知乐空间

根号的运算公式大全(根号5等于多少)

根号5等于多少?(一整套计算根号的公式)

除了常规方法外,还有一些比较实数大小的特殊方法。学习有理数时,比较大小有几种方法:(1)数轴法,右边的数高于左边的数;(2)正数大于0,0大于负数,正数大于负数;(3)比较两个负数的绝对值,绝对值较大的数较小。在学习代数式加减法的时候,我们学习了一种新的比较大小的方法,就是差法,这也是最常规的比较大小的方法。那么,这些方法适合实数吗?有没有比较实数大小的新方法?

方法一:约数法

先求无理数的近似值,然后比较两个数。三个无理数的常见近似值需要牢记,即根号2约为1.414,根号3约为1.732,根号5约为2.236。

如果根号2≈1.414,那么根号2+3≈4.414和4.414 < 4.42,即根号2+3 < 4.42。

方法二:横向法或纵向法。

遇到平方根,可以选择分别平方几个数。当然,你需要注意这两个数字是正数还是负数。如果两个数都是正的,那么平方后,平方数本身也大;如果两个数字都是负数,那么平方后,平方数本身更小。同样,在遇到立方根的时候,也要对待几个立方体,比较它们的大小。

三个数据立方体分别处理为8、15.625和10,确定三个数的大小后就可以确定原数的大小。

方法三:开放式方法

当要判断的两个数中只有一个有根号时,可以在另一个数上加一个根号,然后在根号下比较两个数的大小。根号越大的原数越大。

我们可以选择第二个来判断。两个数的平方分别是56.25和56,可以判断两个数的大小。当然,本题也可以选择开方法来比较根号中两个数的大小和大小。

方法四:有所作为。

用差值法比较A和B的大小。当A-B > 0时,A > B;当A-B=0时,a = b;当a-b < 0时A < b。

先做一个差,然后把差和0比较,得到原来两个数的大小关系。

方法五:找中间变量。

如果我们不能直接看到两个数的大小,我们可以找到中间量,也就是比如得到A > B,如果我们可以找到中间量C,也就是A > C > B,那么我们就可以证明A > B。

这个话题看起来很吓人。其实只要找到中间变量,其实挺简单的。你可以发现第一个公式中分母大于分子,所以数字肯定小于1;在第二个公式中,分母小于分子,所以数字必须大于1,这样就可以比较两个数字。

除上述五种方法外,还有绝对值法、比例法、特殊值法、商业法、倒数法等。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 ZLME@xxxxxxxx@hotmail.com 举报,一经查实,立刻删除。

留言与评论(共有 0 条评论)
验证码: